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Abstract. We derive uniform approximations for contributions to Gutzwiller’s periodic-orbit
sum for the spectral density which are valid close to bifurcations of periodic orbits in systems
with mixed phase space. There, orbits lie close together and give collective contributions,
while the individual contributions of Gutzwiller’s type would diverge at the bifurcation. New
results for the tangent, the period-doubling and the period-tripling bifurcation are given. They
are obtained by going beyond the local approximation and including higher-order terms in the
normal form of the action. The uniform approximations obtained are tested on the kicked top
and are found to be in excellent agreement with exact quantum results.

1. Introduction

Semiclassical approximations, in terms of periodic orbits, belong to the main tools for the
examination of spectral properties of quantum systems. They allow us, for example, to
explain fluctuations in quantum spectra in terms of the periodic orbits of the corresponding
classical system. Semiclassical periodic-orbit approximations have been derived in cases
where the classical dynamics is chaotic or integrable or has more general symmetries [1–8].
In these systems periodic orbits are typically either isolated or appear in families.

Most systems, however, are neither chaotic nor integrable but show a complicated
mixture of regular and chaotic behaviour. In these systems, semiclassical approximations
are more complicated and to date there do not exist complete semiclassical approximations
for quantities such as the spectral density in terms of periodic orbits. These difficulties are
due to the fact that in many situations periodic orbits neither appear in families nor can
they be treated as being isolated in a semiclassical approximation. This is the case when
there are other periodic orbits very near. If the action differences of neighbouring periodic
orbits are not large in comparison with ¯h then the orbits yield a collective semiclassical
contribution, and this is the typical situation when bifurcations of periodic orbits occur. In
order to extend semiclassical approximations to systems with mixed phase space one has to
derive expressions for the joint contribution of orbits which participate in a bifurcation. For
generic two-dimensional systems this was first done by de Almeida and Hannay [9]. They
derived an approximation which was valid in the vicinity of a bifurcation. In this paper we
extend the results of de Almeida and Hannay and derive analytic formulae which interpolate
over the regime from a bifurcation up to regions where the orbits can be considered isolated.

Bifurcations are a characteristic phenomenon in systems with mixed phase space. They
are responsible for the rapid increase of the number of periodic orbits when an integrable
system is transformed into a chaotic system, for example by changing an external parameter.
If one changes this parameter by an arbitrarily small but finite amount, then in general an
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infinite number of bifurcations occur, since they take place any time that the stability angle
of a stable orbit is a rational multiple of 2π . There are different kinds of generic bifurcations,
but the number of different forms is limited. The generic bifurcations that occur in two-
dimensional conservative systems (or, equivalently, one-dimensional area-preserving maps)
were classified by Meyer and Bruno [10–12]. They are characterized by normal forms which
describe the characteristic classical motion in the vicinity of a periodic orbit. Altogether
one has to distinguish five different cases. These are the period-m-tupling bifurcations with
m = 1 up tom = 5. They have the property that a central periodic orbit bifurcates and other
periodic orbits split from the central orbit whose primitive period ism times the primitive
period of the central orbit. (An exception is the casem = 1 for which there is no periodic
orbit before the bifurcation.) The cases form > 5 follow the same pattern as form = 5.

By integrating over the normal forms de Almeida and Hannay derived their
approximation. Their results are expressed in terms of diffraction catastrophe integrals.
In the following we call this approximation the ‘local approximation’, since it is valid
in the vicinity of a bifurcation. In farther distance from a bifurcation it reduces to an
approximation of Gutzwiller’s type for isolated periodic orbits, it does not yield, however,
the correct semiclassical amplitudes of the orbits. In [13] the results of de Almeida were
extended for the casem > 5 by including higher-order terms in the normal forms. A slightly
generalized version of this result is given in [14]. In this paper we derive corrections for the
low-order bifurcations withm = 1–3. We obtain uniform approximations in closed form
which are valid from a bifurcation up to the regime where Gutzwiller’s approximation can
be applied.

This paper is organized as follows. In section 2 we introduce the semiclassical
method for treating bifurcations and in section 3 we present the results for the uniform
approximations in two-dimensional conservative systems that are derived in the appendices.
In section 4 we give the corresponding results for one-dimensional area-preserving maps.
Numerical examinations of the uniform approximations are carried out in section 5 on
the example of a kicked top, and in section 6 we discuss the range of validity of our
approximations and possible extensions.

2. Contributions to the spectral density

In autonomous systems with discrete energy spectra the density of states

d(E) =
∑
n

δ(E − En) = − 1

π
Im TrG(E) (1)

can be expressed in terms of the trace of the (retarded) Green’s function.
Semiclassical contributions of periodic orbits to the level density are derived from (1) by

inserting the semiclassical approximation for the Green’s function. In a mixed coordinate-
momentum representation this approximation is given for two-dimensional systems by

G(q′,p, E) ≈ 1

ih̄
√

2π ih̄

∑
ξ

√|Dξ | exp

{
i

h̄
Ŝξ (q

′,p, E)− iπ

2
ν̂ξ

}
(2)

where the sum runs over all classical trajectories with initial momentump and final position
q′ at energyE. The functionŜξ for a trajectoryξ is defined as

Ŝξ (q
′,p, E) =

∫ q′

q

p · dq + q · p (3)
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where the integral is evaluated along the trajectoryξ , andq is the initial position of the
trajectory which is determined by the initial momentump and the final positionq′. Its
value follows from the condition that the gradient of the right-hand side of (3) with respect
to q vanishes. Ŝ(q′,p, E) is the generating function for a canonical transformation from
final to initial coordinates of a trajectory. The mixed representation has been chosen since
for a bifurcating orbit this transformation is close to the identity which cannot be generated
in a pure coordinate or momentum representation.

Finally, Dξ is the determinant of a matrix of second derivatives ofŜξ

Dξ = det

(
∂2Ŝξ
∂q′∂p

∂2Ŝξ
∂q′∂E

∂2Ŝξ
∂E∂p

∂2Ŝξ
∂E2

)
(4)

and ν̂ξ is an integer related to the Maslov index (see, e.g. [7]).
The semiclassical spectral density is then determined by

d(E) = − 1

π
Im
∫

d2q ′ d2pG(q′,p, E)exp

(
− i

h̄
q′ · p

)
. (5)

In the vicinity of a periodic orbit the integrals are evaluated by choosing local coordinates
with one coordinate along the orbit and one perpendicular to it. If the integral over
the perpendicular direction is evaluated in stationary phase approximation one obtains the
Gutzwiller approximation for the semiclassical contribution of the orbit

dξ (E) = 1

πh̄

Tξ

rξ
√|TrMξ − 2| cos

(
Sξ

h̄
− π

2
νξ

)
. (6)

HereSξ is the action of the orbit whose value is given by the functionŜξ (q
′,p, E)−q′ ·p for

the considered periodic orbit.Tξ ,Mξ andνξ are the period, stability matrix and Maslov index
of the orbit, respectively. The integerrξ denotes the repetition number of the orbit. In this
notation we consider a periodic orbit and its multiple traversals which all give semiclassical
contributions to the level density as different periodic orbits. The uniform approximations
for bifurcating periodic orbits that are derived in this paper will be expressed in terms of
exactly the same classical quantities that appear in (6).

We now consider the contribution of a bifurcating orbit with repetition numberr to
the level density. The condition for such a bifurcation is that the stability matrix of
the corresponding primitive periodic orbit (repetition numberr = 1) satisfies TrM =
2 cos(2πn/r) with integersr andn and thus the stability matrix of therth traversal has a
trace which is equal to two. Letl be the greatest common divisor ofr and n. Then the
bifurcation is a period-m-tupling bifurcation withm = r/ l. Near the bifurcation the integral
over the perpendicular coordinates cannot be evaluated in stationary phase approximation
since there are stationary points nearby which correspond to the other orbits participating in
the bifurcation. This is reflected by the fact that the Gutzwiller approximation (6) diverges at
the bifurcation. Instead, one has to derive a joint contribution of all orbits which are involved
in the bifurcation. This is achieved by expanding the generating functionŜ(q′,p, E) in
higher order around the central orbit. In general this results in a complicated exponent in the
integrand of (5). The integrals can be considerably simplified by a canonical transformation
of the coordinates and by using the fact that the form of equation (5) is semiclassically
invariant under canonical transformations. This follows from the work of Miller [15] and
is discussed by Littlejohn [16].

The most simple form that the generating function can take near the bifurcation is
given by the normal form. This normal form contains information about the number and
arrangement of the orbits which are involved in the bifurcation. The transformation to the
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normal form coordinates has the further advantage that the integral over the coordinates
along the periodic orbit can be performed trivially. These steps are explained in detail in
[13] and for that reason we give here only the resulting formula

dξ (E) ≈ 1

2π2h̄2 Re
∫ ∞
−∞

dq ′
∫ ∞
−∞

dp
1

r

∂Ŝ

∂E

∣∣∣∣∣ ∂2Ŝ

∂p∂q ′

∣∣∣∣∣
1
2

exp

{
i

h̄
Ŝ(q ′, p,E)− i

h̄
q ′p − iπ

2
ν

}
.

(7)

Herep andq ′ are coordinates in the Poincaré surface of section perpendicular to the orbit,
and Ŝ(q ′, p,E) is the generating function for therth iterate of the Poincaré map which
obeys the conditions

∂Ŝ

∂q ′
= p′ ∂Ŝ

∂p
= q ∂Ŝ

∂E
= T (8)

whereT is the time from initial to final point.
The approximation of de Almeida and Hannay for the contributions of orbits near a

bifurcation is obtained by inserting the normal form of the generating functionŜ(q ′, p,E)
for a particular generic bifurcation. This yields the semiclassical contributions in terms of
standard diffraction catastrophe integrals. For the bifurcations which are considered in this
paper the normal forms are given by

m = 1 : Ŝ(q ′, p,E) = S0(E)+ q ′p − σ
2
p2− εq ′ − aq ′3

m = 2 : Ŝ(q ′, p,E) = S0(E)+ q ′p − σ
2
p2− εq ′2− aq ′4

m = 3 : Ŝ(q ′, p,E) = S0(E)+ q ′p − ε
2
(q ′2+ p2)− a√

8
(p3− 3pq ′2)

(9)

whereε is a parameter which is zero at the bifurcation andσ is a sign factor. As will be
shown in the appendices, the diffraction integrals for these cases can be expressed in terms
of Bessel functions. The properties of the bifurcations corresponding to these normal forms
are discussed in more detail in the next section. All these bifurcations involve two periodic
orbits.

The approximation of de Almeida and Hannay is valid in the vicinity of a bifurcation
and hence we called it the local approximation. Further from a bifurcation the local
approximation splits up asymptotically into a sum of separate contributions of Gutzwiller’s
type for the periodic orbits. However, in this limit the semiclassical amplitudes of the orbits
have a fixed ratio, i.e. there is a fixed relationship between the stabilities (and periods) of
the different orbits. In more detail, the approximation holds when the following relations
between the monodromy matrices and the periods of the orbits are valid.

m = 1 : TrM1+ TrM2− 4= 0 T1 = T2

m = 2 : TrM1+ 2 TrM0− 6= 0 T1 = T0

m = 3 : TrM1+ 3 TrM0− 8= 0 T1 = T0.

(10)

For m = 2 andm = 3 the index 0 denotes the central bifurcating orbit and the index
1 denotes the satellite orbit. For the casem = 1 there is no central periodic orbit and
the two periodic orbits which are involved in the bifurcation are given the indices 1
and 2. Relations (10) follow from the normal forms and are valid in the vicinity of a
bifurcation. Further from a bifurcation, however, they are not valid any more, and then the
local approximation becomes inaccurate. In order to obtain a formula which uniformly
interpolates over the region from the bifurcation up to regimes where the Gutzwiller
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approximation is valid (without restrictions on the semiclassical amplitudes) one has to
include higher-order corrections to the normal forms in (9). The resulting integrals can then
be reduced to simpler forms by appropriate coordinate transformations. These calculations
are carried out in appendices A–C, and the results are discussed in the next section.

3. Results for the uniform approximations

3.1. The isochronuous bifurcation

The bifurcation which is described by the normal form in (9) form = 1 has the following
property: on one side of the bifurcation whereε and a have opposite signs two periodic
orbits exist, one stable and one unstable. We denote these orbits byξ1 andξ2. On the other
side of the bifurcation whereε anda have the same sign both orbits are complex, and we
give the index 1 to that orbit for which the imaginary part of the action is positive. Due to
the shape of the function̂S(q ′, p,E)− q ′p this bifurcation is called tangent bifurcation or
saddle-node bifurcation.

The uniform approximation for the semiclassical contributions of the two orbits is
derived in appendix A. Its form is different on the two sides of the bifurcation. On the side
where the orbits are real it is given by

dξ (E) = 1

πh̄

∣∣∣∣2π1S3h̄

∣∣∣∣1/2{A1+ A2

2
cos

(
S̄

h̄
− π

2
ν̄

)(
J−1/3

( |1S|
h̄

)
+ J1/3

( |1S|
h̄

))
− sign(1S)

A1− A2

2
cos

(
S̄

h̄
− π

2
(ν̄ − 1)

)
×
(
J−2/3

( |1S|
h̄

)
− J2/3

( |1S|
h̄

))}
(11)

which is invariant under exchange of the two indices. The quantities which appear in (11)
are the mean action̄S = (S1+S2)/2 , the action difference1S = (S1−S2)/2 and the mean
Maslov indexν̄ = (ν1+ ν2)/2= ν + σ/2 of the orbits. Hereν is the index in (7) andσ is
the sign factor in the normal form (9). Furthermore,Ai denotes here and in the following
the semiclassical amplitude of an orbit

Ai = Ti

ri
√
η(TrMi − 2)

(12)

whereη is given byη = sign(Re(TrMi − 2)) except form = 1 in case that both orbits are
complex. Thenη = −i sign(Im(TrMi)).

Properties of the two orbits when they are real are listed in table 1, and an expansion
of the classical properties of the orbits in terms of the coefficients in the (extended) normal
form are given in appendix A.

Table 1. Properties of real orbits that participate in a generic isochronuous bifurcation (m = 1).
The orbits are denoted byξu and ξs where the indicesu and s denote the unstable and stable
orbit, respectively.

m = 1 σ > 0 σ < 0

aε < 0 ξu unstable,νu = ν ξu unstable,νu = ν
ξs stable,νs = ν + 1 ξs stable,νs = ν − 1
Ss > Su Su > Ss
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On the other side of the bifurcation where the orbits are complex the semiclassical
contribution to the level density is given by

dξ (E) = Re

[
1

πh̄

∣∣∣∣21Sπh̄
∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{
A1+ A2

2
K1/3

( |1S|
h̄

)
+ A1− A2

2
K2/3

( |1S|
h̄

)}]
(13)

where now the actions and amplitudes are complex. Againν is the index in (7) andσ is the
sign factor in the normal form (9). Equations (11) and (13) can be written in a combined
form by expressing them in terms of an Airy function.

In the limit ε → 0 the leading-order semiclassical contribution of equations (11) and
(13) is given by

dξ (E) =
T00

1
3

πl
√

6πh̄7/6a1/3
cos

(
S0

h̄
− π

2
ν − π

2
σ

)
. (14)

HereT0 andS0 are, respectively, the period and action of the orbits at the bifurcation,a is
the coefficient in the normal form (9), andl is the repetition number of the bifurcating orbits.
The contribution (14) is of order ¯h−1/6 larger than the contribution of an isolated period orbit.
All appearing classical quantities in (14) depend on the integerl. In detail,T0,l = lT0,l=1,
S0,l = lS0,l=1, νl = lνl=1 andal = l5/2al=1. The relation for the Maslov index follows from
the Maslov index of the unstable orbit in table 1 for multiple traversals. The last relation is
obtained by noting that all coefficients in the normal form (9) increase by a factor ofl asl is
increased. However,σ is restricted to be±1. This is achieved by a subsequent (canonical)
transformationp→ p/

√
l andq → q

√
l. It follows that the amplitude of the contribution

at the bifurcation decreases likel−5/6 with l. However, this result is only valid as long as
the bifurcation can be considered isolated from other bifurcations. Longer periodic orbits
tend to bifurcate more and more rapidly, for that reason contribution (14) is expected to
break down for largel since the bifurcation cannot then be considered isolated from further
bifurcations of the participating orbits.

3.2. The period-doubling bifurcation

The period-doubling bifurcation which is described by the normal form in (9) form = 2
has the following form. On one side of the bifurcation whereε anda have the same sign
there is only one orbit which is called the central orbit. This orbit changes its stability at the
bifurcation from stable to unstable or vice versa, and a new orbit appears which is named
the satellite orbit since the two fixed points of the Poincaré map which belong to this orbit
lie symmetrically on both sides of the fixed point of the central orbit. This bifurcation is
also called pitchfork bifurcation.

The uniform approximation for the contributions of these orbits to the level density is
derived in appendix B and is given by

dξ (E) = Re

[
1

πh̄

∣∣∣∣π1S2h̄

∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{(

A1

2
+ A0√

2

)(
σ2J1/4

( |1S|
h̄

)
eiσ1π/8+ J−1/4

( |1S|
h̄

)
e−iσ1π/8

)
+
(
A1

2
− A0√

2

)(
J3/4

( |1S|
h̄

)
eiσ13π/8+ σ2J−3/4

( |1S|
h̄

)
e−iσ13π/8

)}]
.

(15)
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Table 2. Properties of real orbits that participate in a generic period-doubling bifurcation
(m = 2). The central orbit is denoted byξ0 and the satellite orbit is denoted byξ1.

m = 2 σ > 0 σ < 0

a > 0 ε > 0 : ξ0 stable,ν0 = ν + 1 ε > 0 : ξ0 unstable,ν0 = ν
ε < 0 : ξ0 unstable,ν0 = ν ε < 0 : ξ0 stable,ν0 = ν − 1

ξ1 stable,ν1 = ν + 1 ξ1 unstable,ν1 = ν
S1 > S0 S1 > S0

a < 0 ε < 0 : ξ0 unstable,ν0 = ν ε < 0 : ξ0 stable,ν0 = ν − 1
ε > 0 : ξ0 stable,ν0 = ν + 1 ε > 0 : ξ0 unstable,ν0 = ν

ξ1 unstable,ν1 = ν ξ1 stable,ν1 = ν − 1
S1 < S0 S1 < S0

This approximation is valid on both sides of the bifurcation. HereS̄ = (S1 + S0)/2,
1S = (S1−S0)/2, ν is the index in (7) andσ is the sign factor in the normal form (9). The
values ofν andσ can be determined from the properties of the orbits which are listed in
table 2. Furthermore,σ1 = sign(1S) andσ2 is a sign factor which discriminates between
both sides of the bifurcation. It is 1 when both orbits are real and−1 when only the central
orbit is real. The orbitξ1 also contributes to (15) when it is complex, but its action and
amplitude factor are always real. The expression of the classical properties of the two orbits
in terms of the coefficients in the (extended) normal form are given in appendix B.

In the limit ε→ 0 the leading-order semiclassical contribution of equation (15) is given
by

dξ (E) =
T00

1
4

4πl
√

2πh̄5/4a1/4
cos

(
S0

h̄
− π

2
ν − π

4
σ − π

8
σ1

)
. (16)

Here T0 and S0 are, respectively, the period and action of the orbits at the bifurcation,a

is the coefficient in the normal form (9), andl is the repetition number of the orbitξ1.
The contribution (16) is of order ¯h−1/4 larger than the contribution of an isolated period
orbit. The dependence of the classical quantities in (16) on the integerl are given by:
T0,l = lT0,l=1, S0,l = lS0,l=1, νl = lνl=1 andal = l3al=1. The relation for the Maslov index
follows from the Maslov index of the unstable orbit in table 2 for multiple traversals, and
the relation for the coefficienta from considerations analogous to those for the isochronuous
bifurcation. It follows that the amplitude of the contribution at the bifurcation decreases
like l−3/4 with l.

3.3. The period-tripling bifurcation

The period-tripling bifurcation is described by the normal form in (9) form = 3. It involves
two orbits, the central orbitξ0 and the satellite orbitξ1. Both orbits exist before and after
the bifurcation. Asε goes through zero both orbits approach each other, they coincide at
the bifurcation and then separate again. For that reason this bifurcation has also been named
‘touch and go’ bifurcation [17].

The uniform approximation for this bifurcation is derived in appendix C and is given
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Table 3. Properties of orbits that participate in a generic period-tripling bifurcation (m = 3).
The central orbit is denoted byξ0 and the satellite orbit byξ1.

m = 3 ε > 0 ε < 0

ξ0 stable,ν0 = ν + 1 ξ0 stable,ν0 = ν − 1
ξ1 unstable,ν1 = ν ξ1 unstable,ν1 = ν
S1 < S0 S1 > S0

by

dξ (E) = 1

πh̄
Re

√
2π |1S|
h̄

exp

{
i

h̄
S̄ − iπ

2
ν

}
×
{(

A0

2
+ A1

2
√

3

)[
J−1/6

( |1S|
h̄

)
+ iσJ1/6

( |1S|
h̄

)]
−
(
A0

2
− A1

2
√

3

)[
J−5/6

( |1S|
h̄

)
+ iσJ5/6

( |1S|
h̄

)]}
. (17)

Here S̄ = (S1 + S0)/2, 1S = (S1 − S0)/2, ν = ν1 is the Maslov index of the satellite
orbit. Furthermoreσ = sign(1S). Properties of the two orbits are listed in table 3, and the
expression of the classical properties of the two orbits in terms of the coefficients in the
(extended) normal form are given in appendix C.

In the limit ε→ 0 the leading-order semiclassical contribution of equation (17) is given
by

dξ (E) =
T00

1
6

9lπ3/2h̄4/3a2/3
cos

(
S0

h̄
− π

2
ν

)
. (18)

Here T0 and S0 are, respectively, the period and action of the orbits at the bifurcation,
a is the coefficient in the normal form (9), andl is the repetition number of the orbit
ξ1. Contribution (18) is of order ¯h−1/3 larger than the contribution of an isolated period
orbit. The dependence of the classical quantities in (18) on the integerl are given by:
T0,l = lT0,l=1, S0,l = lS0,l=1, νl = lνl=1 andal = lal=1. The relation for the Maslov index
follows from the Maslov index of the unstable orbit in table 3 for multiple traversals. It
follows that the amplitude of the contribution at the bifurcation decreases likel−2/3 with l.

4. Uniform approximations for maps

Although we concentrated on autonomous systems in the preceding paragraphs, the uniform
contributions given there can equally be applied, with minor modifications, to quantum
maps. These maps are described by a unitary time-evolution operatorF , the so-called
Floquet operator; the dynamics of the system is generated by repeated applications of
the operator on a state in Hilbert space.F has eigenstates and unimodular eigenvalues
e−iϕi , where the phasesϕi are calledquasi-energiesand the statesquasistationary states
since many quantum maps originate from a stroboscopic description of periodically driven
systems. For such systems with HamiltonianH(t + T ) = H(t), the unitary time-evolution
operator after periodT is chosen asF = U(T ), implying U(nT ) = Fn.

Restricting oneself onto a finite-dimensional subspace of Hilbert space with dimension
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N the quasi-energy spectrum can be obtained by solving the secular equation

P(λ = e−iϕ) := det(F − λI) =
N∑
n=0

anλ
N−n = 0

for theN×N -matrixF . Here the set of traces TrFn comes into play: their knowledge forn
up toN/2 allows us to construct the first half of the coefficientsan via the so-called Newton
formulae; the other half follows from the unitarity ofF which entails self-inversiveness of
the secular polynomial [18].

The semiclassical starting point for the calculation of TrFn is an expression which is
nearly identical in its appearance with equation (7) for autonomous systems,

TrFn =
∫ ∫

dp dq

2πh̄

∣∣∣∣∣ ∂2Ŝ

∂p∂q ′

∣∣∣∣∣
1
2

exp

{
i

h̄
(Ŝ(q ′, p; nT )− q ′p)− i

π

2
ν

}
. (19)

The major difference to the expression for autonomous systems is that one does not switch
to energy representation by a Fourier transform with respect to timet . In translating the
contributions which were derived for autonomous systems into the appropriate contributions
to TrFn attention has to be paid to the following five differences. (i) The orbits which
contribute are those with a fixed periodn, not those with a given energyE; (ii) the primitive
periods have to be expressed in units ofT and thus are integer valued; (iii) the action is
not the reduced energy-dependent one, but depends on time (that is, on the numbern);
(iv) instead of taking twice the real part, the full complex contribution has to be taken; (v)
the results further differ by a factor of 2πh̄. Since these are mainly formal differences the
morphology of the contributions remains unaltered.

In the limit h̄→ 0 each orbit of primitive periodn0 contributes individually according
to

TrFn =
∑
orbits

n0

|2− TrM|1/2 exp

{
i

h̄
S − i

π

2
ν

}
. (20)

In the following we denote the contributions to TrFn by C(n) and useAi = n0,i (η(TrMi −
2))−1/2 to abbreviate the stability amplitudes.η is given byη = sign(Re(TrMi−2)) except
if m = 1 and both orbits are complex, thenη = −i sign(Im(TrMi)). S̄ = (S1+ Si)/2 is the
mean action and1S = (S1 − Si)/2 the action difference wherei is 0 or 2 depending on
the considered bifurcation, andν is the index in (19).

Form = 1 the collective contribution is

C(n) =
∣∣∣∣2π1S3h̄

∣∣∣∣1/2{A1+ A2

2
exp

(
i
S̄

h̄
− i
π

2
ν̄

)(
J−1/3

( |1S|
h̄

)
+ J1/3

( |1S|
h̄

))
− sign(1S)

A1− A2

2
exp

(
i
S̄

h̄
− i
π

2
(ν̄ − 1)

)
×
(
J−2/3

( |1S|
h̄

)
− J2/3

( |1S|
h̄

))}
(21)

when both orbits are real. When they are complex one obtains

C(n) =
∣∣∣∣21Sπh̄

∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{
A1+ A2

2
K1/3

( |1S|
h̄

)
+ A1− A2

2
K2/3

( |1S|
h̄

)}
. (22)
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The amplitudesAi are now complex quantities.σ is the sign factor in the normal form (9).
A pair of orbits involved in a period doubling bifurcation (m = 2) gives the contribution

C(n) =
∣∣∣∣π1S2h̄

∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{(

A1

2
+ A0√

2

)(
σ2J1/4

( |1S|
h̄

)
eiσ1π/8+ J−1/4

( |1S|
h̄

)
e−iσ1π/8

)
+
(
A1

2
− A0√

2

)(
J3/4

( |1S|
h̄

)
eiσ13π/8+ σ2J−3/4

( |1S|
h̄

)
e−iσ13π/8

)}
(23)

with σ1 = sign(1S) andσ2 = 1 when the satellite is real,σ2 = −1 otherwise. Form = 3
the result reads

C(n) =
√

2π |1S|
h̄

exp

{
i

h̄
S̄ − iπ

2
ν

}{(
A0

2
+ A1

2
√

3

)[
J−1/6

( |1S|
h̄

)
+ iσJ1/6

( |1S|
h̄

)]
−
(
A0

2
− A1

2
√

3

)[
J−5/6

( |1S|
h̄

)
+ iσJ5/6

( |1S|
h̄

)]}
(24)

with σ = sign(1S).
These expressions also give the contribution of repetitions of the bifurcating orbits if

one substitutes the corresponding classical quantities. For thelth repetition, the stability
angleω of a stable orbit in TrM = 2 cosω and the instability exponentu of an unstable
orbit in TrM = ±2 coshu increase linearly,ωl = lωl=1 andul = lul=1, as does the action
Sl = lSl=1 and the Maslov index of the unstable orbitsν(u)l = lν(u)l=1. The Maslov index of
the stable orbits isν(s)l = ν(u)l + sign(S(s)l − S(u)l ).

5. Numerical results

In this section we want to test the quality of the uniform collective contributions that we
derived for the various types of bifurcations on a certain quantum map, a periodically kicked
top [19–21]. It will turn out that the uniform approximations are indeed accurate both close
to the bifurcation as well as at a distance; the local approximation is only valid close to the
bifurcation while far away the orbits can be treated as being isolated via the stationary-phase
approximation.

Tops are dynamical systems that involve the angular-momentum operatorsJx , Jy , Jz,
satisfying the usual commutation relations [Jk, Jl ] = iεklmJm, whereh̄ is set to unity. The
evolution of the system is such that the total angular momentumJ 2

x +J 2
y +J 2

z = j (j +1) is
conserved. This introduces the well known good quantum numberj which fixes the Hilbert
space dimension 2j + 1. j + 1

2 further plays the role of the inverse of Planck’s constant;
accordingly, the semiclassical limit is reached by sendingj →∞.

The specific top used here is described by the Floquet operator

F = exp

(
−i

kz

2j + 1
J 2
z − ipzJz

)
exp(−ipyJy) exp

(
−i

kx

2j + 1
J 2
x − ipxJx

)
. (25)

The dynamics consists of rotations by anglespi and nonlinear rotations (torsions) of strength
ki . For the study of bifurcations we hold thepi at fixed values (px = 0.3, py = 1.0,
pz = 0.8) and takek = kz as our control parameter, withkx = k/10. The classical
counterpart of the system is integrable atk = 0 and displays well developed chaos atk = 5.
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Figure 1. Sequence of action spectra|T (1)(S)|2 as the control parameter crosses a tangent
bifurcation (m = 1) at k = 2.45. A ghost peak shows up before the bifurcation atS = 5.3;
beyond the bifurcation the peak splits into two, each corresponding to a bifurcating orbit.

There is a very convenient testing tool which enables one to examine each contribution
of a given cluster of periodic orbits individually. It is obtained by considering the function

T (n)(S) = 1

jmax− jmin+ 1

jmax∑
j=jmin

e−ijS TrFn(j). (26)

In its essence this is a Fourier coefficient of TrFn with respect toj ; finite limits have to be
taken for practical reasons if one wants to evaluate the sum for the quantum system, they
further give control over the desired degree of rigor of the semiclassical limit. We used
jmin = 1 andjmax= 64 with a single exception form = 3.

From the asymptotic behaviour (20) of all uniform approximations it is clear that one
expects peaks in|T (n)(S)|2 at values of the argument which correspond to actions of periodic
orbits. The function|T (n)(S)|2 is called the action spectrum for that reason. Figure 1
confirms that peaks indeed show up. A sequence of action spectra is plotted forn = 1 as
the control parameter,k is varied across a tangent bifurcation atk = 2.45. Already before
the pair of orbits comes into existence a peak is visible atS = 5.3. This peak arises from
the complex predecessors of the bifurcating orbits that were already observed in [22]. The
other peaks pertain to different orbits. Slightly beyond the bifurcation the new-born orbits
have nearly identical actions and give rise to a single peak that would be resolved if one
would go to much higherjmax. Increasing the control parameter further the peak splits into
two peaks which are located at the now well separated values of the orbits’ actions.

The quality of our results can now be tested by calculating the height of the peaks
|T (n)(Scl)|2 both quantum-mechanically exact as well as on the grounds of the various
semiclassical approximations. Figure 2 depicts the height of the aforementioned peaks
as the control parameter is varied across the tangent bifurcation. In the vicinity of the
bifurcation both the local, as well as the uniform approximation, are accurate to a degree
that makes it difficult to resolve the error at all. The uniform approximation also remains
valid as one moves away from the bifurcation. There the sum of individual contributions
of isolated orbits is seen to gain validity.

Figure 3 illustrates the superiority of the uniform approximation over the local one away
from the bifurcation. To that end, the exact peak itself is compared with the approximated
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Figure 2. Height of the peaks in the action spectrum at the positions of the two orbits that are
engaged in the bifurcation of figure 1. Both the uniform and the local bifurcations work well
close to and on the left of the bifurcation. The local approximation starts to fail ask is increased,
and the sum of isolated contributions of Gutzwiller’s type becomes valid. Note that the uniform
approximation remains accurate and can hardly be distinguished from the exact result in this
plot.

ones. The local approximation assumes that the stabilities of both orbits are equal and gives
two peaks of the same height. With the sum of two isolated terms of Gutzwiller’s type
both peak heights are slightly overestimated. The uniform approximation almost coincides
with the exact result. Figure 3 thus shows a case where the distance from the bifurcation
is already so large that the local approximation becomes bad, but not large enough for the
Gutzwiller approximation to become as good as the uniform approximation.

In figure 4, the peak heights of orbits participating in a period doubling atk = 4.3 are
plotted. In this case it is hardly possible to discriminate between the local and the uniform
approximations. Before the amplitudes start to differ significantly, erratic deviations to the
exact result are encountered which stem from overlapping peaks of other orbits. One such
orbit has already been included here with its isolated contribution fork > 5.8 and cures
part of the problem, but other orbits become relevant fromk ≈ 6.2. Instead of further
improving on this we settle for the information that the approximations work well close to
the bifurcation and turn to other period doublings. Figure 5 actually arises from a similar
situation of two overlapping peaks; both peaks, however, arise from two pairs of orbits
which undergo period doublings atk = 2.78 andk = 2.84, respectively. It is a pure
coincidence that both pairs have almost the same action. Plotted now is the collective
contribution of the total number of four orbits in various semiclassical approximations and
the exact result. The situation is qualitatively the same as for the tangent bifurcation: both
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Figure 3. The exact peak in the action spectrum of figure 1 atk = 3.0 is compared with
semiclassically evaluated ones. The uniform approximation works well. The local approximation
predicts peaks of equal height. Treating both orbits as isolated gives peaks that are slightly too
high.

the local and the uniform approximations are excellent close to the bifurcations; moving
away, the uniform approximation remains valid and the sum of isolated orbits starts to work
well while the local approximation breaks down.

For period tripling we encounter difficulties from the close neighbourhood of a tangent
bifurcation of the satellite. This tangent bifurcation was found to be very close to the tripling
for all investigated cases. The problem can be overcome ifjmin is chosen large enough in
order to ensure that the further satellite which is involved into the tangent bifurcation
is well separated, the separation being measured by its difference in action in units of
Planck’s constant,(j+ 1

2)1S. Then our analytical expression (24), which does not describe
the tangent bifurcation, can be tested without being overshadowed by the existence of the
additional satellite. Since the relevant action difference is tiny we raisedjmin up to 213+ 1,
with jmax = 213+ 64. The result is presented in figure 6. For the lower values ofk the
tangent bifurcation atk = 3.525 is still felt strongly and all semiclassical approximations
go wrong. At the period tripling (k = 3.545) and beyond it the uniform and the local
approximation work well again. The breakdown of the local approximation is observed if
one goes to a different scale of the control parameter, as shown in figure 7.

In conclusion, for all cases studied the uniform approximation was found to give
excellent results (as long as the results were not overshadowed by the existence of further
orbits). The local approximation is of the same quality close to the bifurcation. It
breaks down when relations (10) between the monodromy matrices become invalid as one
increasingly detunes the control parameter. Along the same line, the action difference of
the orbits in units of Planck’s constant is large in that region of parameter space, and the
use of the sum over isolated orbits (20) makes sense there.

6. Conclusions

In this paper we examined semiclassical contributions of three different bifurcations in
two-dimensional conservative systems and one-dimensional area-preserving maps. These
bifurcations are the generic period-m-tupling bifurcations withm = 1, 2 and 3. We extended
the local approximation of de Almeida and Hannay for these cases and derived uniform
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Figure 4. Peak height as in figure 2 for orbits involved in a period doubling bifurcation (m = 2)
at k = 4.3. The local and uniform approximations are again accurate before and close to the
bifurcation. This time they remain so until overlapping peaks from other orbits give rise to
deviations. One such orbit has already been included, others not, as is explained in the text.
The sum of individual terms that treats all orbits as isolated fails close to the bifurcation and
regains validity far away.

approximations which interpolate over the regime from the bifurcation up to regions where
the orbits can be considered isolated. The approximations were tested numerically on the
example of a kicked top and were found to be in excellent agreement with exact quantum
calculations. The local approximation was found to be good near a bifurcation, but its
quality decreased further from a bifurcation. In contrast, the Gutzwiller approximation is
good sufficiently far away from a bifurcation, but it diverges at a bifurcation.

We derived the classical properties of periodic orbits that follow from normal forms
with higher-order corrections. We further examined the semiclassical contributions of the
orbits directly at the bifurcation (ε = 0). It was found that with increasingm, bifurcations
contribute more strongly to the level density. In more detail, the semiclassical amplitude
of the orbits at the bifurcation is of orderO(h̄−7/6) for m = 1, O(h̄−5/4) for m = 2,
andO(h̄−4/3) for m = 3. For the casem > 5 it follows from [13] that the semiclassical
amplitude at the bifurcation is of orderO(h̄−3/2). These results are of the general form
O(h̄−1−ν) whereν is the singularity index corresponding to the considered bifurcation [23].
Thus, bifurcations with largerm have a stronger influence on the level density. In addition,
for largerm the semiclassical amplitudes decrease more slowly for higher repetitions of the
bifurcating periodic orbits. For thelth multiple of the bifurcating orbits the semiclassical
amplitude decreases by a factor ofl−5/6 for m = 1, by l−3/4 for m = 2, by l−2/3 for m = 3,
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Figure 5. Two pairs of orbits involved in period doublings atk = 2.78 andk = 2.84 give
rise to overlapping peaks in the action spectrum; the height at the actions of two bifurcating
orbits is plotted here. The accuracy of the uniform approximation in the whole parameter
range, the failure of the isolated treatment close the bifurcation, and the breakdown of the local
approximation at a distance to the bifurcation is clearly visible.

and by l−1/2 for m > 5. We mention, however, that these results have been obtained by
treating the bifurcations isolated from any other bifurcation in the vicinity, an approximation
which is expected to break down for largel.

In general, all uniform approximations in this paper are only valid as long as the
participating periodic orbits do not bifurcate further, i.e. as long as the bifurcations can be
considered isolated. If a periodic orbit undergoes several subsequent bifurcations then the
uniform approximations have to be modified. In general this is the case if contributions
of longer orbits are considered, because they tend to bifurcate more rapidly. The situation
thus becomes more and more complex if longer orbits are taken into account. Whether
neighbouring orbits or neighbouring groups of orbits can be considered isolated depends on
the value of the action difference in comparison with ¯h.

An example of a periodic orbit undergoing two subsequent bifurcations was seen in
section 5. There a tangent bifurcation occurred very close to a period-tripling bifurcation.
Similar situations for period-doubling and period-quadrupling bifurcations have been
observed in [24, 17]. In these cases the uniform approximation has to be modified by
fully integrating over an extended normal form in which higher-order terms are included
that describe also subsequent bifurcations. This means that the reduction of the higher-
order corrections in the exponent of the oscillatory integral (7), as done in appendices A–C,
cannot be performed in these cases. Instead, the higher-order corrections have to be left in
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Figure 6. Height of peaks in the action spectrum that arise from orbits involved in a period
tripling bifurcation (m = 3) at k = 3.545. The satellite is engaged in a tangent bifurcation with
another satellite atk = 3.525; this makes it necessary to increasejmin = 213+1 as discussed in
the text. The additional satellite is only felt slightly at the bifurcation and the accuracy is high
for the local and uniform approximations.
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Figure 7. The same period tripling is investigated
as in figure 6. For the chosenjmin = 1
an additional satellite overshadows the result
close to the tripling. As one goes away from
the bifurcation to higherk the uniform and
isolated approximations work fine and the local
approximation is inaccurate.

the exponent. For the mentioned period-tripling bifurcation this was done in [25].
An extension of the present results concerns the casem = 4, i.e. the period-quadrupling

bifurcation. Since the casem > 4 was treated in [13] this is the only remaining generic bifur-
cation. The treatment of the generic period-quadrupling bifurcation is more complicated than
the other cases since it involves three periodic orbits whose action differences all scale with
the same leading power inε (for smallε). As a consequence one has to add two correction
terms to the local approximation in order to obtain a formula which has the correct Gutzwiller
limit. Furthermore, the diffraction catastrophe integral for this case can in general not be
expressed in terms of simple functions. A treatment of this bifurcation is in preparation.
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A further extension concerns systems with symmetries. In these systems there can be
further kinds of bifurcations which are characteristic for the considered symmetry. Normal
forms for systems with symmetries have been derived in [26, 27]. If these normal forms
agree with normal forms for generic bifurcations, then they can be described, with only
slight modifications, by the same uniform approximations. For example, in systems with
time-reversal and reflection symmetries there can be isochronuous pitchfork bifurcations
[27]. These bifurcations are described by formula (15) for period-doubling bifurcations
with the replacement ofA1 by 2A1. Another example where the generic formula form > 5
is applied to symmetric period-n-tupling bifurcations withn = m/2 is discussed in [14].
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Appendix A. Uniform approximation for the isochronuous bifurcation

The starting point for the derivation of the uniform approximation is the expansion of the
generating function in the vicinity of the bifurcation

Ŝ(q ′, p,E) = S0+ q ′p − εq ′ − aq ′3− bq ′4− σ
2
p2. (27)

Here we went one order higher inq ′ than in the normal form expansion, and in the following
we will treat the extra term as a perturbation to obtain the uniform approximation. It is
sufficient to consider only corrections inq ′, since the variablep is not essential for the
description of the bifurcation. This is expressed by the splitting lemma of catastrophe
theory [28]. (See also [29] for higher-order corrections to the normal form for the reduced
Hamiltonian.)

By rescalingq ′ andp it can always be achieved thatσ = ±1 in (27). The fixed points
of the map generated bŷS are given byŜq ′ = p, Ŝp = q ′, and up to second order in

√|ε|
we get for the two fixed points engaged in the bifurcation

p1,2 = 0

q ′1,2 = ±
√
− ε

3a
+ 2bε

9a2
+O(|ε|3/2)

(28)

while we will not consider the additional fixed point which now formally arises as a third
solution of the equations. The value of the actionsS = Ŝ − q ′p at the fixed points is

S1,2 = S0∓ 2ε

3

√
− ε

3a
− bε

2

9a2
+O(|ε|5/2) (29)

where S0 is the value of the generating function at the origin. Ifε has the same sign
as a then the orbits are complex and there is an ambiguity for choosing the sign of the
square root in equations (28) and (29). We then choose to give the index 1 to that orbit for
which the imaginary part of the action is positive. This formally corresponds to choosing√−ε/(3a) = −i sign(ε)

√|ε/(3a)|.
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The periods of the orbits are given by

T1,2 = T0∓ εE
√−ε

3a
+O(ε) (30)

whereT0 = ∂Ŝ/∂E, evaluated at the origin, and corresponds to the mean period. The traces
of the monodromy matrices follow from the relation

TrM =
(
∂2Ŝ

∂p∂q ′

)−1(
1+ ∂2Ŝ

∂p∂q ′
∂2Ŝ

∂p∂q ′
− ∂

2Ŝ

∂p2

∂2Ŝ

∂q ′2

)
(31)

which is evaluated at the stationary points and leads to

TrM1,2 = 2∓ σ6a

√
− ε

3a
+ 8σb

3a
ε +O(|ε|3/2). (32)

Furthermore the semiclassical amplitudes are given by

A1,2 = T1,2

l
√
η1,2(TrM1,2− 2)

= 1

l |12aε|1/4
(
T0∓

(
2b

3a
T0+ εE

)√
− ε

3a
+O(ε)

)
(33)

where l = r1 = r2 is the repetition number of the orbits,ηi = sign(Re(TrMi − 2)) when
the orbits are real andηi = −i sign(Im(TrMi)) when they are complex.

In the following we will use the definitions

S̄ = S1+ S2

2
1S = S1− S2

2
Ā = A1+ A2

2

1A = A1− A2

2
ν̄ = ν1+ ν2

2

(34)

whereν1 andν2 are the Maslov indices of the orbits when they are real.
We continue now with the evaluation of the integral in (7). The main contribution to

the integral overq ′ comes from the region near the stationary points. For that reason we
considerq ′ in the following as a quantity of orderO(|ε|1/2). Then the exponent of the
integral can be simplified by substituting

q ′ = εb

9a2
+ x − x2 b

3a
(35)

which leads to a reduction of the generating function

Ŝ(q ′, p,E)− q ′p = S̄ − εx − ax3− σ
2
p′2+O(|ε|5/2). (36)

This is just the usual normal form with the replacement ofS0 by S̄. Furthermore, the
exponential prefactor in the integral is modified by the Jacobian of the transformation.
After an integration overp we obtain

dξ (E) = Re

[
exp( i

h̄
S̄ − iπ

2 ν − iπ
4 σ)

l
√

2π3h̄3

∫ ∞
−∞

dx

(
T0− 2b

3a
T0x − εEx

)
× exp

{
− i

h̄
(εx + ax3)

}]
(37)

where the exponential prefactor has been expanded up toO(x). The integral in (37) can
be split into two terms. The first term with the constant term in the exponential prefactor
has the same form as the local approximation, and the second term is proportional to the
derivative of the first term with respect toε. The integrals can be found in the section on
Airy functions in [30]. The result depends on whetherε has the same or the opposite sign
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asa. We first consider the case when they have opposite sign, i.e. when the orbits are real.
The contribution to the level density is then given by

dξ (E) = Re
exp( i

h̄
S̄ − iπ

2 ν − iπ
4 σ)

l
√

2π3h̄3

{
2πT0

3

√∣∣∣ ε
3a

∣∣∣ (J−1/3

( |1S|
h̄

)
+ J1/3

( |1S|
h̄

))
−2π iε

9|a|
(
εE + 2bT0

3a

)(
J−2/3

( |1S|
h̄

)
− J2/3

( |1S|
h̄

))}
. (38)

This result can be expressed also by the Airy function Ai and its derivative, but it seems
more natural to express it by Bessel functions since then the analogy to the results for higher
repetition numbers is more visible. All coefficients can be expressed by the classical actions
and amplitudes. The final result is

dξ (E) = 1

πh̄

∣∣∣∣2π1S3h̄

∣∣∣∣1/2{Ā cos

(
S̄

h̄
− π

2
ν̄

)(
J−1/3

( |1S|
h̄

)
+ J1/3

( |1S|
h̄

))
− sign(1S)1A cos

(
S̄

h̄
− π

2
(ν̄ − 1)

)(
J−2/3

( |1S|
h̄

)
− J2/3

( |1S|
h̄

))}
.

(39)

Here we replacedν+σ/2 by the mean Maslov index̄ν. It can be seen that this is correct from
a stationary phase evaluation of the integrals which shows theν1,2 = ν+σ/2±sign(1S)/2.
The first term in the curly brackets in (39) is just the local approximation in which the
stability factors of both orbits are equal. At the bifurcation (ε→ 0) the dependence of the
classical quantities onε guarantees a finite result. The second term in the curly brackets
is the uniform correction which ensures the correct limit as ¯h→ 0 for finite ε, since then
one arrives at a sum of two individual contributions for the two orbits, each of Gutzwiller’s
type.

On the other side of the bifurcation where the orbits are complex andε anda have the
same sign, the evaluation of the integral in (37) leads to

dξ (E) = Re
exp( i

h̄
S̄ − iπ

2 ν − iπ
4 σ)

l
√

2π3h̄3

×
{

2T0

3

√∣∣∣ ε
a

∣∣∣K1/3

( |1S|
h̄

)
+ 2iε

3
√

3|a|

(
εE + 2bT0

3a

)
K2/3

( |1S|
h̄

)}
. (40)

In this equation the mean quantitiesS̄ and Ā are real, but the differences1S and1A
are purely imaginary. The quantities are defined in equations (29), (33) and (34) with the
convention for the sign of the square root that has been discussed above

dξ (E) = Re
1

πh̄

∣∣∣∣21Sπh̄
∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{
ĀK1/3

( |1S|
h̄

)
+1AK2/3

( |1S|
h̄

)}
. (41)

In the limit that the argument of theK-Bessel functions is large one obtains only the
contribution of that orbit for which the imaginary part of the action is positive

dξ (E) = Re
A1

πh̄
exp

(
i

h̄
S1− iπ

2
ν − iπ

4
σ

)
. (42)

This is connected to Stokes’ phenomenon.
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We now discuss in slightly more detail the approximation that was applied in this section.
We started with the extended normal form and derived approximations (38) and (40) from
it. The step to obtain the uniform approximation consisted of expressing the coefficients of
the normal forms in these equations by the classical actions and amplitudes of the orbits.
This resulted in equations (39) and (41), which have the correct asymptotic form asδS/h̄,
becoming large. These approximations thus have the properties of uniform approximations,
they are valid close to the bifurcation as well as far away from it. From another point of
view, they are valid in both limits ¯h → 0 as well asε → 0. One might ask what would
happen if one added even more corrections to the normal form (27). After a modification of
transformation (35) this leads to higher powers ofx in the exponential prefactor in integral
(37). This results in higher derivatives of the Airy function which can be expressed by
the Airy function and its first derivative (by using the differential equation for the Airy
function). After expressing the coefficients by the classical actions and amplitudes, one
obtains exactly the same equations (39) and (41) since the coefficients of the Airy functions
are fixed by the asymptotic form of the equations for largeδS/h̄. The only difference in
comparison with the previous derivation is that the expansions of the classical actions and
amplitudes are carried out in higher order.

Appendix B. Uniform approximation for the period-doubling bifurcation

For the period-doubling bifurcation, we start again with the normal formŜ(q ′, p,E) of the
action and go beyond the local approximation by incorporating higher-order terms. As in
the casem = 1 it is sufficient to consider only corrections inq ′. The extended normal form
is then

Ŝ(q ′, p,E) = S0+ q ′p − εq ′2− aq ′4− bq ′6− σ
2
p2 (43)

where once moreσ = ±1. No odd powers ofq ′ appear since both satellite fixed points
belong to the same orbit and have the same action and stability. The fixed points lie at

p0 = 0 q ′0 = 0

p1 = 0 q ′1 = ±
√
− ε

2a

(
1+ 3bε

8a2

)
+O(|ε|5/2) (44)

where the subscript 0 indicates the central orbit which has a repetition number of 2l, and
the subscript 1 denotes the satellite orbit. The actions of the orbits areS0 and

S1 = S0+ ε2

4a
+ bε

3

8a3
+O(ε4) (45)

and the periods are given byT0 = ∂Ŝ/∂E evaluated at the origin and

T1 = T0+ εE
2a
ε +O(ε2). (46)

The traces of the monodromy matrix follow from (31) and are given by

TrM0 = 2− 2σε

TrM1 = 2+ 4σε − 3bσ

a2
ε2+O(ε3)

(47)

and the stability prefactors follow as

A0 = |8εl2|−1/2T0

A1 = |4εl2|−1/2

(
T0+ εE

2a
ε + 3bT0

8a2
ε +O(ε2)

)
(48)
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where the repetition numbers of the orbits arer0 = 2l andr1 = l.
In the following we will use the definitions

S̄ = S1+ S0

2
1S = S1− S0

2
ν̄ = ν1+ ν0

2
. (49)

In order to evaluate integral (7) we want to get rid of the dependence of the exponent
on q ′6 and introduce for this purpose a new variable by

q ′2 = x2− x4 b

2a
. (50)

If one considersq ′ as a quantity of orderO(|ε|1/2) the generating function reduces to

Ŝ − q ′p = S0− εx2− ãx4− σ
2
p2+O(ε4) (51)

where ã = a − bε/(2a). One can check that the new prefactor in front ofx4 yields the
correct action (45) up to orderε3 at the fixed points. After integrating overp one arrives at

dξ (E) = Re

[
exp( i

h̄
S0− iπ

2 ν − iπ
4 σ)

l(2πh̄)3/2

∫ ∞
0

dx

(
T0− 3bT0

4a
x2− εEx2

)
× exp

{
− i

h̄

(
εx2+ ãx4

)} ]
(52)

where the exponential prefactor has been expanded up to orderO(x2). Once more the
integral splits into two terms of type

B1 =
∫ +∞
−∞

dx exp

(
− i

h̄
(εx2+ ãx4)

)
= π

2

∣∣∣ ε
2ã

∣∣∣1/2 exp

{
i

h̄
1S

}(
J−1/4

(∣∣∣∣1Sh̄
∣∣∣∣) e−iσ1π/8− σ1σ̃2J1/4

(∣∣∣∣1Sh̄
∣∣∣∣) eiσ1π/8

)
(53)

and

B2 =
∫ +∞
−∞

dx x2 exp

(
− i

h̄
(εx2+ ãx4)

)
= − ε

4ã
B1− πε

8ã

∣∣∣ ε
2ã

∣∣∣1/2
× exp

{
i

h̄
1S

}(
J3/4

(∣∣∣∣1Sh̄
∣∣∣∣) eiσ1π3/8− σ1σ̃2J−3/4

(∣∣∣∣1Sh̄
∣∣∣∣) e−iσ1π3/8

)
(54)

where1S as given above,σ1 = sign(ã) = sign(1S), andσ̃2 = sign(ε). Now we introduce
σ2 = −σ̃1σ̃2 to discriminate between both sides of the bifurcation (σ2 = 1 when the satellite
orbit is real andσ2 = −1 when it is complex). Expressing all coefficients by the actions
S0,1 and stability factorsA0,1 the final result is

dξ (E) = Re
1

πh̄

∣∣∣∣π1S2h̄

∣∣∣∣1/2 exp

(
i

h̄
S̄ − iπ

2
ν − iπ

4
σ

)
×
{(

A1

2
+ A0√

2

)(
σ2J1/4

( |1S|
h̄

)
eiσ1π/8+ J−1/4

( |1S|
h̄

)
e−iσ1π/8

)
+
(
A1

2
− A0√

2

)(
J3/4

( |1S|
h̄

)
eiσ13π/8+ σ2J−3/4

( |1S|
h̄

)
e−iσ13π/8

)}
.

(55)
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In contrast to the tangent bifurcation, all appearing classical quantities are real even when
the satellite orbit is complex. In the limit where the argument of the Bessel functions is
large, the expression reduces to a sum of the two Gutzwiller contributions of the orbits
whenσ2 = 1, and to the single Gutzwiller contribution of the central orbit whenσ2 = −1.

Appendix C. Uniform approximation for the period-tripling bifurcation

For the period-tripling bifurcation the calculations are more involved, since the orbits which
participate in the bifurcation now lie in a plane. For the previous two bifurcations (m = 1
andm = 2) the orbits lay on a line so that one has only got to treat one-dimensional
integrals.

The normal form of the generating functionŜ(q ′, p,E) in terms ofq ′- andp-coordinates
is given by

Ŝ(p, q ′, E) = S0+ pq ′ − ε
2
(p2+ q ′2)− a

2
√

2
(p3− 3pq ′2). (56)

The functionŜ(q ′, p,E)−q ′p has four stationary points, one at the origin which corresponds
to the central orbit, and three others which lie on an equilateral triangle and correspond to
the satellite orbit. In contrast to the previous two cases, one has to go two orders beyond
the normal form in the expansion of the generating functionŜ since the first correction
does not change the amplitude prefactor of the satellite orbit. The higher-order terms in this
expansion are restricted by the condition that the three stationary points which correspond
to the satellite orbit have to yield all the same three action and the same trace of the
monodromy matrix of the satellite orbit. This leads to the expansion

Ŝ(p, q ′, E) = S0+ pq ′ − ε
2
(p2+ q ′2)− a

2
√

2
(p3− 3pq ′2)− b

4
(p4+ 2p2q ′2+ q ′4)

−9a2

8
p(3p2q ′ − q ′3)− c

4
√

2
(p5− 2p3q ′2− 3pq ′4)

− 27a3

64
√

2
(39p3q ′2− 29pq ′4)− 3ab

4
√

2
(−3p4q ′ + p2q ′3). (57)

The requirement that the three stationary points yield the same classical properties also
allows a further term of the formdq ′(p2+ q ′2)(3p2− q ′2), but the properties of the orbits
do not depend on this term and it can be removed in a later step by modifying the coefficients
(63) of the transformation (62). For that reason we do not include it.

In the following the expansions of several quantities in terms ofε are given. The action
of the satellite orbit is

S1 = S0− 4

27a2
ε3− 16b

81a4
ε4− 4(64b2− 243a4− 24ac)

729a6
ε5+O(ε6) (58)

and its period is of the form

T1 = T0+ ∂Ŝ

∂E

∣∣∣∣
p=p1,q ′=q ′1

= T0− 4εE
9a2

ε2+O(ε3). (59)

The traces of the stability matrices of the periodic orbits follow from (31) and are given
by

TrM0 = 2− ε2

TrM1 = 2+ 3ε2+ (2511a4− 128b2+ 192ac)

54a4
ε4+O(ε5).

(60)
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The amplitude prefactors follow as

A0 = T0

3l
√|TrM0− 2| =

T0

3l|ε|
A1 = T1

l
√|TrM1− 2| =

1√
3l|ε|

×
(
T0− 4εE

9a2
ε2− T0(2511a4− 128b2+ 192ac)

324a4
ε2

)
+O(ε2)

(61)

where the repetition numbers of the orbits arer0 = 3l andr1 = l.
We continue now with the evaluation of the integrals in (7) with the generating function

of (57). The exponent in the integral is simplified by applying a transformation of the form

p = p̃ + c1p̃
2+ c2p̃q̃ + c3q̃

2+ c4p̃
3+ c5p̃

2q̃ + c6p̃q̃
2+ c7q̃

3

q ′ = q̃ + d1p̃
2+ d2p̃q̃ + d3q̃

2+ d4p̃
3+ d5p̃

2q̃ + d6p̃q̃
2+ d7q̃

3
(62)

which removes the terms proportional toq ′np4−n andq ′np5−n in the exponent (within the
considered order of the approximation). The coefficients of the transformation are given by

c1 = −b
√

2

6a
−
√

2

216a3
(28b2− 243a4− 24ac)ε c2 = −3

√
2a

4
c3 = −c1

c4 = −27a4− 2b2+ 2ac

12a2
c5 = b

4

c6 = −351a4− 16b2+ 16ac

96a2
c7 = −b

4

d1 = 3
√

2a

4
d2 = −2c1 d3 = 0 d4 = −b

d5 = −27a4− 16b2+ 16ac

96a2
d6 = b

2
d7 = −81a4− 8b2+ 8ac

48a2

(63)

and the transformation leads to

dξ (E) = 1

6lπ2h̄2 Re
∫ ∞
−∞

dp̃
∫ ∞
−∞

dq̃ [α1+ α2(p̃
2+ q̃2)]

× exp

{
i

h̄

(
S0− ε

2
(p̃2+ q̃2)− ã

2
√

2
(p̃3− 3p̃q̃2)

)
− iπ

2
ν

}
(64)

where the exponential prefactor in (7) times the Jacobian of the transformation (62) has
been expanded up to orderε2. The new constants appearing in (64) are

α1 = T0

α2 = −144εEa2+ 2511T0a
4− 128T0b

2+ 192T0ac

288a2
= 27a2l

4|ε|
(
A1

2
√

3
− A0

2

)
ã = a − 2b

3a
ε + 243a4− 28b2+ 24ac

54a3
ε2.

(65)

After a change of variables̃p = √2I cos8 and q̃ = √2I sin8 the integrals in (64) are
transformed into

dξ (E) = 1

6lπ2h̄2 Re
∫ ∞

0
dI
∫ 2π

0
d8 [α1+ 2α2I ]

× exp

{
i

h̄

(
S0− εI − ãI 3/2 cos(38)

)− iπ

2
ν

}



4560 H Schomerus and M Sieber

= 1

3lπh̄2 Re
∫ ∞

0
dI [α1+ 2α2I ]J0

(
ãI 3/2

h̄

)
exp

{
i

h̄
(S0− εI)− iπ

2
ν

}
(66)

where the relation∫ 2π

0
d8 exp{iz cos(m8)} = 2πJ0(z) (67)

has been used. The two remaining integrals are evaluated according to appendix D and
result in∫ ∞

0
dI J0

(
ãI 3/2

h̄

)
exp

{
− i

h̄
εI

}
= h̄

|ε|

√
2π |1S|
h̄

exp

{
i1S

h̄

}
×
[
J−1/6

( |1S|
h̄

)
+ iσJ1/6

( |1S|
h̄

)]
(68)

and∫ ∞
0

dI IJ0

(
ãI 3/2

h̄

)
exp

{
− i

h̄
εI

}
= 2h̄ε2

9|ε|ã2

√
2π |1S|
h̄

exp

{
i1S

h̄

}
×
[
J−1/6

( |1S|
h̄

)
+ iσJ1/6

( |1S|
h̄

)
+ J−5/6

( |1S|
h̄

)
+ iσJ5/6

( |1S|
h̄

)]
(69)

where1S = (S1 − S0)/2 = −2ε3/(27ã2) andσ = sign(1S) = − sign(ε). Altogether one
obtains

dξ (E) = 1

πh̄
Re

√
2π |1S|
h̄

exp

{
i

h̄
S̄ − iπ

2
ν

}
×
{(

A0

2
+ A1

2
√

3

)[
J−1/6

( |1S|
h̄

)
+ iσJ1/6

( |1S|
h̄

)]
−
(
A0

2
− A1

2
√

3

)[
J−5/6

( |1S|
h̄

)
+ iσJ5/6

( |1S|
h̄

)]}
(70)

whereS̄ = (S1+ S0)/2.

Appendix D. The diffraction integral for the period-tripling bifurcation

In this section we evaluate the diffraction integral which appears in the uniform
approximation for the period-tripling bifurcation. We consider first the casez > 0:∫ ∞

0
dI J0(I

3/2)eizI = lim
ε→0

∞∑
n=0

(iz)n

n!

∫ ∞
0

dI I nJ0(I
3/2)e−εI

3/2
(71)

= lim
ε→0

∞∑
n=0

(iz)n

n!

2

3
(1+ ε2)−(n+1)/30

(
2n

3
+ 2

3

)
P(2n−1)/3

(
ε√

1+ ε2

)
(72)

= 2

3π

∞∑
n=0

(iz)n

n!
2(2n−1)/302

(
n

3
+ 1

3

)
sin
(πn

3
+ π

3

)
(73)

= 2

3

∞∑
n=0

(
4iz3

27

)n
2−1/3 0(n+ 1

3)

n!0(n+ 2
3)
+ 2iz

3

∞∑
n=0

(
4iz3

27

)n
21/3 0(n+ 2

3)

3n!0(n+ 4
3)

(74)

= 22/30( 1
3)

30( 2
3)

1F1

(
1

3
; 2

3
; 4iz3

27

)
+ iz

24/30( 2
3)

90( 4
3)

1F1

(
2

3
; 4

3
; 4iz3

27

)
(75)
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= 2

3

√
πz

3
exp

(
2iz3

27

)[
J−1/6

(
2z3

27

)
+ iJ1/6

(
2z3

27

)]
. (76)

The parameterε has been introduced in (71) in order to make the integrals absolutely
convergent. The integrals leading to (72) after a substitutionx = I 3/2 can be found in
[31]. From (72) to (73) the limitε → 0 has been performed and the duplication formula
of the gamma function has been used. From (73) to (74) the sum has been split into three
parts (by taking every third term, respectively) where the third part vanished. Furthermore,
the recurrence formula and the triplication formula of the gamma function have been used.
From (74) to (75) the definition of Kummer’s function1F1 has been used, and from (75) to
(76) the formula exp(iz)Jν(z) = (z/2)ν 1F1(ν + 1

2; 2ν + 1; 2iz)/0(ν + 1) was used [32].
The corresponding expression for negative values ofz follows from the evenness and

oddness of the real and imaginary part of the integral, respectively. We obtain∫ ∞
0

dI J0(aI
3/2)e−izI = 2

3

√
π |z|
3a2

exp

{
−i

2z3

27a2

}[
J−1/6

(
2|z|3
27a2

)
− i sign(z)J1/6

(
2|z|3
27a2

)]
(77)

and from the derivative of this integral with respect toz follows∫ ∞
0

dI IJ0(aI
3/2)e−izI = 4

27

√
π |z|5
3a6

exp

{
−i

2z3

27a2

}
×
[
J−1/6

(
2|z|3
27a2

)
− i sign(z)J1/6

(
2|z|3
27a2

)
+J−5/6

(
2|z|3
27a2

)
− i sign(z)J5/6

(
2|z|3
27a2

)]
. (78)
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[22] Kuś M, Haake F and Delande D 1993 Prebifurcation periodic ghost orbits in semiclassical quantizationPhys.

Rev. Lett.71 2167–71
[23] Arnol’d V I 1973 Remarks on the stationary phase method and Coxeter numbersRuss. Math. Surv.28 19–48
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